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Advection of a magnetic field by a turbulent swirling flow

P. Odier, J.-F. Pinton, and S. Fauve*
Ecole Normale Supe´rieure de Lyon, CNRS URA 1325, 69364 Lyon, France

~Received 6 July 1998!

We study the magnetic field fluctuations generated by a turbulent swirling flow in the presence of an
externally applied magnetic field. We show that the spectra of local magnetic field fluctuations have a region
of power law scaling which is interpreted in terms of Kolmogorov’s model of turbulent velocity fluctuations.
We also discuss the mean and rms values of the magnetic field induced by the velocity gradients.
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We report an experimental study of the magnetic fi
fluctuations generated in a turbulent flow of liquid gallium
in the presence of an externally applied field. We consi
the case of a weak ‘‘seed’’ fieldBW 0 , so that the Lorentz
forces do not modify the flow@1#. The velocity gradients

induce magnetic field fluctuationsbW at all scales, the descrip
tion of which pertains to the dynamics of a ‘‘passive vecto
in turbulence, in analogy to the passive scalar case@2#. How-
ever, this passive vector dynamics involves stretching
magnetic field lines by velocity gradients, analogous
stretching of vorticity lines, and is thus at an intermedia
level of complexity between passive scalar advection
fully developed turbulence. In particular, stretching of ma
netic field lines by velocity gradients may overcome Jo
dissipation and generate a large scale magnetic field by
plification of weak initial disturbances—this is the dynam
effect, which is at the origin of the magnetic field of the ea
and of many astrophysical objects@3,4#. Our first motivation
is to study the statistical properties of the fluctuating m
netic field; incidentally we show that it can be used as
probe of the turbulent velocity gradients. There exist alm
no experimental studies of this problem, i.e., the effect o
flow of liquid metal on an externally applied magnetic fie
@5,6#, whereas much research has been devoted to the m
fication turbulence by a strong Lorentz force. Our seco
motivation is to use the fieldbW generated by velocity gradi
ents as a response function of the turbulent flow to the
plied field BW 0 , in order to obtain insights into the stretchin
mechanisms believed to be at the origin of the dynamo
fect. We use the flow created in the gap between two coa
rotating disks, the von Ka´rmán swirling flow, as it is known
to involve strong stretching by velocity gradients@7#. This
leads to an amplification of intense vorticity both f
counter-rotating@8# or corotating disks@9#. One may thus
expect a similar efficiency for the amplification of magne
field fluctuations because of thevW -bW analogy@3#. In addition,
this flow possesses many features, such as differential r
tion or poloidal and toroidal mean flow components, whi
are known to favor dynamo action@3#.

Our experimental setup is schematically shown in Fig
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Two 11-kW ac motors are used to drive the disks~radiusR
510 cm) at a constant frequencyV, adjustable in the range
5–50 Hz. The enclosing cylindrical vessel has a volume
5.5 liters. It is filled with liquid gallium~density r56.09
3103 kg m23), chosen for its high electrical conductivit
(s53.683106 V21 m21). Its kinematic viscosity isn
53.131027 m2 s21. The integral kinematic and magnet
Reynolds numbers of the flow are defined asRe
52pR2V/nP@106,107# and Rm52pm0sR2VP@1.3,15#.
Note that, as in all liquid metals, the magnetic Prandtl nu
ber Pm5m0sn is very small (;1026). Thus the flow is
strongly turbulent (Re is large! even at moderate values o
Rm , for which interesting dynamics of the magnetic field a
expected. The surfaces of the disks bear an etched patte
the form of squares 1 mm thick. The purpose of this artific
rugosity is to ensure an inertial entrainment of the fluid.
this case the rms value of the velocity fluctuations is prop
tional to ~and equal to about a tenth of! the disk’s rim speed:
The flow power consumptionP then scales asV3 @10#. Mea-
surements yieldP5K(rR5V3), with K513.360.1, a nu-
merical constant independent of the Reynolds number.
dissipated into heat by the turbulent motion and drained
by the cooling circuits located behind the disks. For each
at a fixed rotation rate, the flow is kept at a constant te
peratureuP@40 °C,80 °C#. Two pairs of Helmholtz coils are
set to produce an external fieldB0 up to 40 G, either paralle
or perpendicular to the rotation axis. Magnetic measureme
are performed inside the vessel using directional and t
perature compensated Hall probes with a Bell 9905 gau

FIG. 1. Experimental setup~not to scale!. R510 cm, H
510 cm. The magnetic Hall probe is located in the median plane
a variable distanced from the rotation axis.
7397 © 1998 The American Physical Society
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meter, the spatial resolution is 3 mm, with a frequency ra
of 50 kHz in the ac mode or 400 Hz in the dc mode. Press
measurements are performed with an acceleration com
sated transducer PCB H112A21, 5 mm in diameter, moun
flush with the lateral wall@11#.

When a steady magnetic field is applied on the flow,
induced field is produced as a result of stretching by the lo
velocity gradients. As the flow is fully turbulent, the veloci
gradients follow scaling laws in a range of scales—the
called inertial domain of turbulence@2#. One may thus ex-
pect scaling properties for the magnetic field fluctuatio
Figure 2~a! shows typical power spectra~in time! of mag-
netic field fluctuations. The measurements are made atRm
510.8 with the Hall probe placed inside the flow; the curv
correspond to different orientations of the applied fieldBW 0

and induced componentbW . They are quite similar, with first a
flat frequency region followed by a steep cutoff which d
plays an algebraic decayb̃2( f )} f 2a ~the discrete lines in
the spectrum corespond to noise generated by the ele
motors driving the disks!. When comparing magnetic spect
recorded at increasing rotation rates~and hence magneti
Reynolds number!—see Fig. 2~b!—one observes that thi
behavior is preserved. The transition between the flat spe
region and the power law one occurs for a frequency of
order of V, i.e., the integral time scale of the flow. Th

FIG. 2. ~a! Magnetic spectra for different orientations (BW 0 ,bW )
with respect to the rotation axis of the applied and induced fie
V540 Hz; Rm510.8; probe atd51 cm from the wall.~b! Mag-
netic spectra forRm53.5 andRm515, for the field component par

allel to the rotation axis.BW 0 is also axial.
e
re
n-
d

n
al

-

.

s

ric

ral
e

scaling region also widens with increasingRm ; it is always
larger than a decade. Note that this is a lower bound si
our measurements are limited by the amplitude resolution
the Hall probes; the actual extent of the scaling zone of
magnetic fluctuations may be larger. In Fig. 3 we compar
with the scaling domain of pressure fluctuations measure
the flow wall. It can bee seen there that it lies in the dom
where the pressure fluctuations also follow a power law, i
in the inertial range of the velocity field@11#. We thus ob-
serve a scaling behavior of the magnetic field fluctuatio
b̃2( f )} f 2a, in the inertial range of turbulence. Measur
ments for all orientations and accessible values ofRm yield
a53.760.2.

These results can be understood as follows. In the p
ence of a uniform and constant applied fieldBW 0 , magnetic
field perturbationsbW are governed by the equations@3#:

~] t1uW •¹W !bW 5@~bW 1BW 0!•¹W #uW 1lDbW ,
~1!

¹W •bW 50.

Since the magnetic diffusivity (l51/m0s) is orders of mag-
nitude larger than the kinematic viscosity,bW adiabatically
follows uW . In this ‘‘quasistatic’’ approximation@12,13#, one
has, to leading order

lDbW '2~BW 0•¹W !uW , ~2!

provided that the induced field is much smaller than the
plied ones, as is well verified in our experiment. ThusbW
obeys a Poisson equation—this is analogous to the pres
field albeit second order derivatives of the velocity field a
involved in the later case. Keeping in mind that the flow
not modified byBW 0 , Eq. ~2! and a dimensional analysis i
the framework of Kolmogorov phenomenology then leads

b̃2~k!}k22ũ2~k!;k211/3 ~3!

in the inertial range. This behavior, predicted by Golyts
@12# and Moffatt @13# for turbulent magneto hydrodynamic

s,

FIG. 3. Comparison of magnetic and pressure spectra, atRm

510.8. The pressure is measured at the lateral wall. The low
quency cutoff in the magnetic spectrum is due to the ac filtering
the gaussmeter.
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~MHD! flows at very small magnetic Prandtl number, is co
sistent with our measurements, providing Taylor’s hypo
esis may be used@14#,

Note that, when eddy-damped quasinormal Markov
~EDQNM! closures are applied to MHD equations, the re
tion b̃2(k)}k22ũ2(k) between kinetic and magnetic energ
subsists when the magnetic field is generated by the dyn
effect, although both spectra are steeper because of the e
of the Lorentz force@15#. We thus find that the magneti
energy is confined to large scales of the flow, the small sc
fluctuations being rapidly damped through the combined
tion of stretching and Joule dissipation. The similarity of t
high frequency regions of the magnetic spectra in Fig. 2~a!
shows that the small scale velocity gradients are fairly i
tropic, in agreement with Kolmogorov phenomenology; co
versely, the differences in the low frequency parts are
cribed to the effects of large scale gradients which are
from being isotropic in this flow. We also emphasize th
although the curves in Figs. 2 and 3 correspond to a m
surement near the lateral wall atRm;11, these features ar
found for all values ofRm and positionsd of the probe inside
the flow.

We now consider the temporal average,b̄ of the magnetic
field bW . Equation~2! yields:

b̄~rW !'g!~BW 0•¹W !uW , ~4!

whereg is a Green function~equal to the free space one on
for insulating boundary conditions at the vessel walls, a
the ! denotes the convolution of functions!. Equation~4! is
the leading order term for the distortion of the magnetic fi
lines; it is due to the nonuniformity of the flow alongBW 0 and
varies linearly withRm at smallRm @1,3#. This is evidenced
in Fig. 4, where the azimutal component of the induced fi
is plotted againstRm , for an applied field parallel to the
rotation axisz. Here an azimutal componentbu is induced by
the stretching term]zuu , i.e., by differential rotation~the
disks rotate in opposite directions!.

Note here that we have checked thatb̄ is linear as a func-
tion of B0 , even at a small rotation rate of the disks. Th
shows that the velocity field,uW , is not affected by the Lor-
entz force, in agreement with the small value of the inter
tion parametersB0

2R/ru ~the ratio of Lorentz to pressur
forces!.

FIG. 4. Azimutal component of the induced field for an appli
field of 33 G applied in the direction of the rotation axis.
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A similar induction of magnetic field is observed whe
the applied field is oriented normal to the rotation axis—s
Fig. 5. A perpendicular magnetic component~i.e., b̄ parallel
to the rotation axis! is observed, at every positiond of the
probe inside the flow. This is due to the nonuniformity in t
transverse direction of the axial velocity component. He
again, the amplitude of the induced field varies linearly w

FIG. 5. Average value of the magnetic field for different orie

tations (BW 0 ,bW ) with respect to the rotation axis of the applied a
induced field.
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Rm . It is thus seen that the three dimensional structure of
mean flow results in a three-dimensional 3D geometry
the magnetic field induced by the velocity gradients.

Additional information about the velocity gradients is o
tained by studying the fluctuations of the induced field. W
first observe thatbrms varies linearly with Rm—cf. Fig.
6~a!—as expected from Eq.~4!. The slopes ofb̄/B0 and
brms/B0 as a function ofRm are different—see Table I. We
attribute this to the fact that whereas the mean value of
induced fieldb̄ is due to the large scale structure of the me
flow, its fluctuations are generated by the turbulent fluct
tions. In agreement with previous velocimetry measureme
in this type of flow, we observe that the mean velocity g
dients are larger spanwise~i.e., for derivatives taken in the
transverse direction!.

FIG. 6. ~a! Evolution of the rms amplitude of the induced ma
netic field, for RmP@2,15#; the respective orientations of the a
plied field and measured induced components are (s5B0i ,bi),
(h5B0i ,b'), (L5B0',bi , and (.5B0',b'). ~b! Corre-
sponding probability density function.
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Another fact is thatb has quasi-Gaussian fluctuations,
shown in Fig. 6~b!. This is in sharp contrast with the beha
ior of pressure fluctuations in turbulent flows, which displ
asymmetric probability density functions with an exponent
tail toward the low values@11#. Note that both fields obey a
Poisson equation with a source term involving the veloc
gradients. The main difference is that the source term is
ear forb, and quadratic forp.

Finally, we discuss the three-dimensional dynamics of
magnetic field in our flow in regard to the dynamo proble
First we observe that differential rotation generates a toro
field component from a poloidal one; this is an importa
mechanism for dynamo action@3#. Indeed, this effect is the
source of solid rotor dynamos introduced by Herzenb
@13#, and shown in the experiment of Lowes and Wilkins
@16#. Second, we observe the induction of an axial field fro
an applied transverse field. Together, these processes
lead to a nonlinear growth of the magnetic energy. Inde
starting withBW 0 , the large scale velocity gradients genera
an induced componentbW (1) with an amplitudeO(B0Rm); in
turn, bW (1) can be acted upon by the velocity gradients
produce an induced fieldbW (2) whose amplitude is now
O(b(1)Rm);O(B0Rm

2 ), etc. We note that numerical studie
of flows with similar geometries~but different boundary con-
ditions!, based on kinematic dynamo calculations@17# or us-
ing direct simulation@18#, and EDQNM closures of MHD
equations@15#, show that dynamo action occurs and giv
critical valuesRm

c P@20,50# for its onset. Work is underway
to operate our flow using liquid sodium as a working flui
magnetic Reynolds numbers exceeding 80 will be reache

This experiment was designed with the technical help
Claude Laroche, Djamel Bouraya, and Marc Moulin. W
thank Rhoˆne-Poulenc for lending us the gallium. This wo
was supported by grants from Centre National de la Rec
che Scientifique and the French Education and Rese
Ministery.

TABLE I. Variation of rms fluctuations of the induced magnet
field, for an applied field of 20 G. Thei and' symbols denote the
orientations of the applied and induced field with respect to
rotation axis of the disks.

B0i ,bi B0i ,b' B0',bi B0',b'

1

B0

dbrms

dRm
0.0012 0.0024 0.0022 0.0019

1

B0

db

dRm
20.0016 0.0157 0.0065 20.0018
e,
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